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AbItrIct-ln mechanics, as well as in physics, the most general and important thing is to study the
dependence of the characteristics of a physical process on problem parameters. Problems of dynamic
stability for non-conservative systems involve determination of eigenvalues and eigenvectors. For these
problems it is shown in general how the different sensitivity analyses can be performed without any new
eigenvalue analyses. The main question relates to the change in flutter load as a function of change in
stiffness, mass, boundary conditions, or load distribution. Discretized as well as non-discretized examples
are presented in details.

INTRODUCTION
Problems of stability for non-conservative systems are connected with the question of stability
of vibrations, i.e. dynamic stability. There are several classic works on this subject: Bolotin (I),
Ziegler[2} and Leipholz[3}.

The condition of stability (boundaries between stable and unstable domains) naturally
depends on the parameters of the problem, i.e. on the design, on the boundary conditions, the
load distribution, etc., and it is therefore important to obtain qualitative and also quantitative
information about the dependence of stability on the discrete and distributed parameters of the
problem. This is what we refer to as sensitivity analysis. The intention of this paper is to
present detailed analyses of the sensitivity of dynamic stability in the sense of derivatives with
respect to discrete parameters, and gradient functions for the case when the independent
parameter is a function.

Dealing with non-conservative problems we have to be aware that instability may occur
either dynamically (flutter) or statically (divergence). Also we have to note that the classic
extremum principles like the Rayleigh principle are not valid for non-conservative problems.
However, recent analyses have shown that the introduction of the adjoint problem admits a
stationarity principle. This theory has been described by Leipholz[4}, and has also been dealt
with by Prasad and Herrmann(5, 6]. In relation to the sensitivity analysis, this introduction of
the adjoint problem is of major importance.

It is interesting to note that the sensitivity analysis with respect to an increment of the load
parameter clarifies the condition of instability, and thus makes possible a more rigorous
definition of terms like critical load, flutter load and divergence load. For Ihis sensitivity
analysis as well as all the other sensitivity analyses performed, it turns out that the solution to
the main and the adjoint problem provides all the necessary information for evaluating the
sensitivities. Thus, we may increase our level of information without too much additional effort.

One major application of sensitivity analysis is within optimal structural design, because
sensitivities provide the necessary information for advantageous redesign. Also, it should be
noted that optimality conditions/criteria are given directly by sensitivities. In the proceedings(7]
(mostly dealing with conservative problems) the editors Haug & Cea treat sensitivity analysis as
the "cornerstone" of any approach to optimal design, and the present authors agree with this
point of view.

Optimal design for non-conservative problems has been studied by Ashley and
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Mclntosh[8,9], Vepa[lO], Plaut and Weisshaar[1l,12], Claudon[13-15], Odeh and
Tadjbakhsh[\6], Hanaoka and Washizu[17]. Unfortunately, many papers are confusing with
respect to the expressions for the gradient functions. Although these gradient functions include
much information, the reader is seldom shown how these functions look for a specific design.
Gradient functions are displayed in papers by Seyranian [18] for non-conservative problems and
Pedersen[19] for conservative problems.

The intention of the present paper is to derive more general expressions for different
derivatives and gradient functions, and then to discuss the detailed results for many specific
examples.

2. SENSITIVITY ANALYSIS IN MATRIX FORMULATION
Let us consider linear non-conservative systems with the finite degree of freedom n,

focusing on the phenomenon of dynamic stability. Thus we shall present sensitivity analysis in
matrix formulation, which has the advantage that boundary conditions are an integrated part.
Furthermore, the formulation relates directly to practical methods of analysis like the finite
element method. For continuous description with operator formulation, see Seyranian[18]. We
shall assume that the system is characterized by the parameters Ii, including the different design
variables

(2.\ )

and we shall frequently omit the index of a specific parameter t.
Separating the time dimension T by the exponential function

we get the homogeneous matrix equation

[L]{<I>} = {O}

(2.2)

(2.3)

where the system matrix [L] depends on the real load parameter P, on the complex eigenvalue
A = a + iw, and on the real parameters ti• The complex eigenvector {$} contains the generalized
coordinates, say displacements. We may write the matrix [L] as a linear function of real
matrices, specifying the dependence on A explicitly by

[L] =[5] +[Q] + A2[M] + A[C], (2.4)

where the symmetric stiffness matrix [5] and the symmetric mass matrix [M] depend on t j , but
not on P. The nonsymmetric load matrix [Q] and the damping matrix [C] depend on P as well
as on tj •

The dynamic stability of the system is determined quantitatively by the eigenvalues
Ar = ar + iWr for r = 1, 2, .... n. The eigenvalue with the maximum real part is the important
one, and for this the index is omitted. From the time function (2.2) we have

a ?: a, for r = 1, 2, ... , n

Stable motion for a < 0

Critical motion for a = 0

Flutter instability for a > 0 and w #- 0

Divergence instability for a > 0 and w = 0

(2.5)

The critical case is clarified by determining the derivative of a, i.e. by a sensitivity analysis. A
more precise definition of a critical load P = Per is therefore

a =0 and aal aP > 0 at P = Pc,. (2.6)
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This is a sufficient condition for instability of the system, when P becomes greater than Pcr

Sensitivities of the critical load
In addition to the physical problem (2.3) we define an adjoint problem by
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(2.7)

where the complex eigenvector {'If} contains the adjoint generalized coordinates. The eigen
values of (2.3) and (2.7) are identical.

Let us take a variation 8t of the system parameter t. Then the quantities A, P, {<t>} undergo
the increments 8A, 8P,{8<t>}, and using the symbol of "," for partial differentiation, eqn (2.3)
gives

[Ll,A {<t>}8A + [LJ.p{<t>}8P + [LJ.,{<t>}8t + [L]{8<t>} = {O}. (2.8)

We multiply this equation from the left by {'I'V, and by the definition (2.7) get {'I'V[L]{8<t>} =0,
whereby eqn (2.8) gives

(2.9)

Especially at a critical load P =Pcr we have by condition (2.6) A= iWcr and 8P =8Pcn 8A =
i8wcn whereby eqn (2.9) gives

For divergence instability, where Acr = iWcr = 0 and 8Acr = i8wcr =0, eqn (2.10) gives the deriva
tive aPe,!8t directly, but for flutter instability we have to take the real parts, whereby we get the
result

(2.11)

which is also valid for divergence instability.
Note, that both the derivative aPe'!at, and the derivatives to follow are determined by the

system matrix [LI, the eigenvector {<t>} and the adjoint eigenvector {'It} without involving
further (expensive computer) calculations.

Sensitivities of the eigenvalue
The sensitivity of the critical frequency 8wer also contain important information, and as 8Pcr is a

real quantity, from eqn (2.10) we find this to be

If the load is kept unchanged, we get from eqn (2.9) with 8P = 0

aA _ aa + .aw _ - {'I'V[LIA<t>}
at - at I at - {'lfV[Lb {<t>} .

(2.12)

(2.13)

If on the other hand, the system parameters are kept unchanged, we get from eqn (2.9) with
8t =0

~ _ aa + .aw _ - {'I'V[Ll,p{<t>}
ap - aP 'ap - {'I'V[Ll,A {<t>} . (2.14)
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The instability criterion (2.6) may therefore be written

(2.15)

The true but more complicated formulas corresponding to (2.11) and (2.12) were first
obtained by Bun'kov[20]. The formulas also agree with the ones in the paper by Claudon and
Sunakawa[15] (except for a sign in eqn (8) of [15]). The reader should be aware of the fact that
many earlier papers contain errors in their corresponding expressions.

3. SYSTEMS WITHOUT DAMPING
For systems without damping the results of the previous section can be considerably

simplified. The system matrix [Ll reduces to

[L]::= [S] + [Ql + A~[M}, (3.1 )

and the solutions to (2.3) are either real A2 with corresponding real {<l>} (A 2> 0 giving divergence
instability and A2 < 0 stable harmonic vibrations), or complex conjugate solutions with cor
responding complex conjugate eigenvectors {<l>}.

Let us write the "mutual energies" corresponding to two different solutions i and j of (2.3)
and (2.7), respectively

{'l'}/[S}{<l>L +{'l'}/[ Q]{<l>L + A/{'l'}{[M]{<l>L ::= 0,

{'l'}/[S]{<l>L + {'l'}/[ Q]{<l>L + A/{'l'}/[M}{<l>}j ::= O.

Then, by subtraction, we get

which, for it? ¥ it/, gives the biorthogonality condition

{'l'}{[M]{<l>L ::= 0 for i # j

(3.2)

(3.3)

(3.4)

Then by arguments of continuity, at a flutter point, where two eigenvalues become equal, we
get the "flutter condition"

(3.5)

and therefore by (3.1)

(3.6)

For divergence instability eqn (3.6) is also valid because AD O. Therefore, we get the
simplified expression for systems without damping from (2.9)

aPcr _ - {'It}T[LL{<l>}
at - {'It}T[Llp{<l>} ,

(3.7)

in agreement with Hanaoka and Washizu[17}.
In systems modelled by the finite element method, the system matrix [Ll may often be

written as

(3.8)
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where the matrices [S], [Q], [M], [L] are independent of t and P. Thus, the derivative (3.7) will be

aPcr (nt" {'I'}T[S]{4>} +mtmA2{'I'V[M]{<Il})/t
at = - {'I'V[ii]{<Il}

(3.9)

Each term of eqn (3.9) may be interpreted as a specific mutual energy. Formula (2.13) for this
case with A2 = - (Ji simplifies to

aw (nt"{'I'}T[S]{<Il} - mt mw2{'I'V[M]{<Il})/t
at = 2w{'I'V [M]{<Il}

(3.10)

This formula is used in [19] for selfadjoint problems where {'I'} = {<Il}. Analogously, eqn (2.14)
reduces to

aw _ {'I'}T [Q]{<Il}
ap - 2W{'I'}T[M]{<Il}" (3.11)

4. A NON-DISCRETIZED PROBLEM
Figure I shows a follower force problem, which is an extension of the classic Beck problem:

extended to include a linear elastic support, a concentrated mass in addition to the distributed
mass, and a partial follower force. The stability analysis for this problem is given in Ref. [21],
and here we shall give the formulation for a non-uniform column. For this problem the
separated differential equation in space is

(su")" +pu" +A2mu = 0

and the boundary conditions are

u(O) = u'(O) = su"(I) = 0

(su")'(1) +(I - 1J)pu'(I) - (IJ-A 2 + K)U(l) = 0

(4.1)

(4.2)

as shown in detail in[21]. For a uniform column the non-dimensional stiffness and mass are
s == 1 and m == I. If the non-dimensional follower force p is known, (4.1)-(4.2) will constitute
an eigenvalue problem for the "frequency" quantity A2 = (a + iw)2 which is based on the
non-dimensional time separation e(a+iwIT. Note that p as well as A2 is involved in the boundary

p

/. u

Fig. I. Extended Beck column.
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condition, which also reflects the elastic support stiffness K, the concentrated mass j.t and the
follower angle 1J.

For the uniform column it is possible to solve this eigenvalue problem without dis
cretization, and the eigenfunction may be written

with

u(x,p,A) y+jz

y(x, p, A) = cosh (ax) - cos (bx)

z(x, p, A) = a sin (bx) - b sinh (ax)

I( A = a 2 cosh(a)+b2 cos(b)
p, ) ab(asinh(a)+bsin(b))

(4.3)

(4.4)

The problem, which is adjoint to (4.1 )-(4.2), is described by the differential equation (equal
to (4.1)

(SV")" + pv" + A2mv =0

and the boundary conditions

v(O) = v'(O) =0

sv"( I) + 1)pv(l) = 0

(sv")/(I) +pv/(l) - (j.tA 2 + K)V(l) =0

and the eigenfunction for the case of a uniform column is

v(x,p,A)=y+gz

with

(a 2 -1JP)cosh(a)+(bC-11P)Cos(b)
g = b(a 2 + 11P) sinh (a) +a(b2 -11P) sin (b)

_ a(a 2 +p) sinh (a) b(b 2
- p) sin (b) - (f.LA c+ K)(cosh (a) - cos (b»

- ab«a2+p) cosh (a) +(b 2
- p) cos (b» - (j.tA 2 + K)(b sinh (a) - a sin (b»'

(4.5)

(4.6)

(4.7)

(4.8)

Note that, for the conservative problem (11 = 0), we have equality between (4.2) and (4.6), and
g =f in agreement with v == u.

The solution to this stability problem A = A(p, 7/, f.L, K) is given in [21]. We shall concentrate
on the flutter point solutions Ap, PP = Ap, pp( 1), j.t, K) listed in Table 1, and show how sen
sitivities are obtained without further eigenvalue solutions.

First we derive the "ftutter condition" for problem (4.l)-(4.2). We multiply by v and
integrate to obtain the "mutual potential and kinetic energies"

f{SV"U Il
- PV'U/)dX+( 1JPVU/+(j.tA/+ K)VU)x=1 + f A}mvudx=O, (4.9)

where on integration by parts the boundary conditions (4.2) are used. The eigenvalue is given
the index u to indicate the relation to the eigenfunction u. Analogously, from the adjoint
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Table I. Flutter load PF and ftutter frequency WF for the extended Beck problem. from (21)

jJ;K;O n;l • K;O 11 ; 1 . \.1=0

n; 0.5 ni'l n = 1.5 jJ;O jJ; 0.5 \.1=1 ]J = 2 K=O K '" 10 K ; 20 K ; 30

PF 16.1 20.05 30.6 20.05 16.1 16.2 16.6 20.05 24.5 30 36

w
F

7.1 11 12 11 7.3 6.3 5.5 11 10.9 10 8.3

problem (4.5)-(4.6), we get
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f (SU"V"- pu'v/)dx + (T/PU/V + (pJ'v2 + K)UV)x=1 + f Av
2muv dx = O. (4.10)

Subtracting (4.10) from (4.9) yields

(A} - A/)(f muv dx + j.L(UV)X=I) = 0 (4.11)

which for Au ¢ Av expresses the biorthogonality condition. At a ftutter point the condition of a
double eigenvalue, by arguments of continuity, gives the ftutter condition

(4.12)

Here we have a condition which includes a boundary term.
That the problems (4.1)-(4.2) and (4.5)-(4.6) are adjoint is seen directly from (4.9)-(4.10) by

putting AM = A,,,
Stationarity of the total mutual energies, as discussed generally in section two, means that

we may obtain the variation of eqn (4.9) without varying the displacements u and v. If all other
quantities are varied we obtain

f ~SVlu" dx - ~p f v/ u/ dx + (~T/Pvu/ + ~PT/vu/ + 5j.LA 2VU + 5AI-L2Avu + 5Kvu)x= 1

+~A2A f mvudx+A 2 f ~mvudx=O (4.13)

which, at a ftutter point where Al = - wi (aF =0) and where condition (4.12) is valid, simplifies
to

f ~svFuFdx - wI f ~mvFuF dx +(~l1PFVFUp- ~j.LwlvFuF + ~KVFUF)x=' (4.14)

=~PF(f VPupdX-l1(VFUP)x=,)

The derivatives of the ftutter load PF with respect to changes of boundary parameters 11, j.L
and K are therefore

opF! oT/ = pp(vpu f)'=I/(f vFu Fdx -l1(VpU F)X=I)

opF! OK = (VpUp)X='/(f vpupdx -l1(VpUP)x=l)

opF!oj.L = - wiapF!aK

(4.15)
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and for the design changes 8s, 8m we get

J8sv'Fu'Fdx - w/ J8mvFuF dx
OPF = '----::-----"-----Jvpupdx - T/(VFUp)FI

which, for the case of s = m', by defining the gradient function

2 I" 11 2g(x) = mVFUF- WF VFUF

Jvpupdx - T/(VFUp)FI

we may write

OPF = Jgom dx.

(4.16)

(4.17)

(4.18)

Table 2 shows some results of the derivatives (4.15), and Figs. 2-4 shows gradient functions
calculated by (4.17).

It may be observed that the influence of an end-spring or an end-mass is evaluated without
analysis of a column induding these effects. In total, if we have increments OTj, OK, OJL, om(x)
we can obtain the total increment of PF by

a a a l'OPF = :; OT/ + :: OK + :: OJL + 0 gom dx. (4.19)

In several earlier papers the term - W/VFUF of the gradient function (4.17) is missing, which
has encouraged us to show specifically the influence of this term. Furthermore, according to
eqn (4.16), this term gives the gradient function for non-structural masses (os = 0, 8m;t 0).

Results with a partial follower force (parameter T/ of Fig. 1) are shown in Fig. 2, and we see
a very strong influence of Tj especially in relation to the term - wi VFUF' Note that in domains of
a negative gradient (g(x) < 0), the flutter load PF is increased by removing material (8m(x) < 0).

The influence of an end-mass (parameter JL in Fig. 1) is shown in Fig. 3. The influence is
rather weak and the main thing to be noted is that the importance of the term (- wi VFUF) has
diminished.

Finally, we have studied the influence of an end-spring (parameter K in Fig. 1) and give the
results in Fig. 4. This parameter introduces a second domain of high positive g(x), and thus
modifies the gradient function more generally.

5. SOME DISCRETIZED PROBLEMS
Only few problems like the one in section four can be solved directly without discretization.

When the column is non-uniform or the load is distributed, we have to perform the stability
analysis by the finite difference method, the finite element method, the Ritz method, the
Bubnov-Galerkin method or another weighted residual method. To solve the problems cor
responding to Fig. 5 we shall here use the last-named method, but in reality the general aspects
of the results do not depend on the discretization method chosen.

Table 2. Derivatives of the flutter load with respect to boundary parameters

\l = K =0 n = 1 , K=O l- r~~ 1 ,~ = (] .__

n = 0.5 11=1 Il = 1. 5 \l=0 \l = 0.5 \l = 1.0
, " 2"18" c ~L 0 2"1' "JO- ---t-------

dl'f./d n .13 15. 21. 15. .31 -.95 ~.-, " ."J"Jj c~ .
1---'

.51 -40. -bJ. -61.(-37.
dP/d\l - .11 -40. -66. -40. -.28 .56

f--- - \ I ---

0!'F/ dK .002 .33 .4(, .33 .005 -.014 - . 017 . 33 .51 i .(,1 I .54



Sensitivity analysis for problems of dynamic stability

-50

-50

o.~-':::::""'-"",L ---""";:;;;"'"

-50

323

0.25

x

050 075

Fig. 2. Gradient function (4.17) for Beck's column with partial follower force (11 = 0.5, 1.0 and 1.5). No
end-mass and end-spring (~'" /( '" 0). Uniform beam (m'" I, S '" m2

). Dotted curves give 2mllFuf., curves
starting at (0, O) give (- wIVpUF), and the total gradient functions are also shown.

For a cantilever beam of nonuniform mass m(x), bending stiffness s(x), Kelvin-Voigt
internal damping with coefficient y, external viscous damping with coefficient /3. loaded
according to the distribution pq(x). and with eigenvalue A, the separated differential equation in
space is

«su")" +pQu"} +A({3u + y(su")") +A2mu :::: 0
(5.1)

(Q= f qWd~)

with the boundary conditions

u(O) == 1/(0) == 0

(1 +Ay)(su")x=1 = (1 +Ay)(su"K=1 = 0
(5.2)
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150 fJ. 2 °

100

50

ot----.......-oC.-- ---~

-50

-!oo f1 = 1O

0>

50

0

-50

100 f1 0.5

50

ot--....::::::,._L. -----.;:~

-50

-IOO~0----::O~.2-:-5---0~5::-:0:----"::'O.':':75:------<

Fig. 3. Gradient function (4.17) for Beck's column with end-mass (p. = 0.5, 1.0 and 2.0). No end-spring
(K =0) and tangential force (11 = 1). Uniform beam (m '" I, s =m2

). Dotted curves give 2mvFui:, curves
starting at (0,0) give (- wivpup), and the total gradient functions are also shown.

Specific cases of uniform columns without damping (I' == 'Y == 0) are known from the literature,
I.e.

Leipholz[22): qW == I~ Q == 1- x

Hauger{23): q([) == 1 [:? Q =} (1 - X)2

and an optimization paper by Claudon[l4) treats the Hauger column with damping.
The adjoint problem to (5.1)-(5.2) is described by the differential equation

«sv")" +p(QvY') + A(I'v + y(sv")") + A2mv = 0

(Q ==rq(~) d~)

(5.3)

(5.4)
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150 K=30

100 (\
I -.\.,

325

-IOOO~----:O:-:.2::5----:0~5;;O::---~O';.1::5-----:

)l,

Fig. 4. Gradient function (4.17) for Beck's column with end-spring (K '" 10,20 and 30). No end-mass (I' '" 0)
and tangential force (7/ "" I). Uniform beam (m '" I, s '" m~). Dotted curves give 2mv'Fu'F. curves starting at

(0,0) give (- w/VFUF). and the total gradient functions are also shown.

x

,j

,'l
II pqlxl

u

Fig. 5. Extended Leipholz and Hauger column.
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with the boundary conditions
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v(O) = v'(O) =0

(I + AY)(SV")FI = «(I + Ay)(sv")' - pqv).~1 = 0

For the Hauger column q(l) = 0, and (5.4)-(5.5) agree with [14].

(5.5)

Analysis for eigenvalues, eigenmodes and adjoint eigenmodes
Approximate solutions are obtained by expansions of the eigenmodes and adjoint eigen

modes, i.e. discretization into the linear combination factors of the expansions

(5.6)

Primarily we shall assume that the expansion functions Uj, Vi satisfy the kinematic boundary
conditions only

Uj(O) = u;{O) = 0 for j = 1, 2, , J,

Vj(O) = v',{O) =0 for i = 1,2, , 1. (5.7)

Let's consider the functional I(u, v) which is obtained from the scalar product (Lu, v) with
the use of integration by parts

I(u, v) = f «(1 + Ay)sv"u" +pQvu" +Af3vu + A2mvu ) dx. (5.8)

It is easy to see that stationarity of this functional with respect to arbitrary smooth variations
8u, 8v, satisfying kinematic boundary conditions (5.7), is equivalent to the boundary value
problems (5.1)-(5.2), (5.4)-(5.5).

Using expansions (5.6) and taking variations in the form

we get

[L]{<I>} = {O} and {'I'}T[L] = {oV
[L] = [S] +p[Q] + A(y[S] + f3[C]) + A2[M]

where the elements of the involved matrices are defined by

1

elements of the stiffness matrix [5]: Sij = 10 su'fu '; dx

elements of the load matrix [Q]: gij = f QUiU'; dx

elements of the damping matrix [C]: Cij =f ViUj dx

elements of the mass matrix [M]: mij =f mUiUj dx

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



Sensitivity analysis for problems of dynamic stability

The approximate eigenvalue is then obtained by the determinant condition

(5.14)

and the corresponding eigenvectors and adjoint eigenvectors are then evaluated from eqn (5.9).
This method we may call a Ritz method.

IC Uj as well as Vj satisfies all the boundary conditions the method is the one proposed by
Prasad and Herrmann[5], and if, furthermore, Vi:= Uj we have the classical Bubnov-Galerkin
method. For the present solutions we choose as expansion functions the eigenfunctions which
resemble those for the uniform cantilever beam

Vj:= Uj := cosh (ajx) - cos (ajx) - fj(sinh (ajx) - sin (a;.l»,

Ij := (cosh (aj) +cos (a;))/(sinh (a;) +sin (aj»,

a, := 1.8751040687, a2:= 4.6940911329, a3 = 7.8547574382,

a4 = 10.995407348, as:= 14.1371683910, a6 = 17.2787595320.

(5.15)

The same approach, but limited to two functions, was used by Hauger [23]. In Fig. 6 we
show the resulting characteristic curves w := w(p) and a = a(p) obtained by two, four and six
functions. We note, that the two mode expansion gives an appreciable error (PF = 158.2), while
the difference between the results of the four and the six mode expansions is rather small.
These results confirm the flutter load PF = 150.6 obtained by Claudon[13].

A number of different examples have been solved to obtain the information necessary for
the sensitivity analysis to follow. In Figs. 7-9 we present the characteristic curves correspond
ing to extended versions of the Beck problem, the Leipholz problem, and the Hauger problem.
We include external damping f3 and internal damping ')', and show solutions for non-uniform
columns. The information related to the second eigenmode is omitted, being of minor interest,
but as in Fig. 6 we show the solutions also in the domain of instability, which gives much
more insight. The quantitative results for these problems are given in Table 3.

It is interesting to note how similarly the three different problems react to the introduction
of damping. The relations between the uniform column and the column with linearly varying
mass (m = 1- 0.9x, s = m2

) are also very similar. Thus, the main difference between the results
for the Beck, the Leipholz and the Hauger columns is the scale of the abscissa. The influence of
internal damping, so nicely discussed by Bolotin and Zhinzher[24], is here illustrated in a number
of different problems. At the flutter point (aF := 0) the curves a := a(p) cross without changing
the sign of the curvature, i.e. we have a2al ap 2 > O. This also holds for ')'~ o.

w

15.

wlp)
10

a
5

o

-5 ·150 :160

Fig. 6. Characteristic curves for the Hauger column obtained by two, four and six expansion functions.
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6 ~ 0

6 1

y ~ 0.01

,y 0

6 1, y ~ 0

0.01y16

w(p) ,M 1-0.9x

6 ~ 0 , y 0.01

6 1 y 0

6 ~ 1 y ~ 0.01

alp) , m " 1 6 y ~ 0

cdp) ,m 1 - O. 9x

(0, -5) :5 :10 p

Fig. 7. Characteristic curves for the Beck column with external and internal damping, curves to the right
for a uniform column, and curves to the left for a linearly tapered column.

Sensitivity analysis at the discretized level
As we have seen from the results an expansion in six (or even four) functions gives rather

accurate results. For this case the sensitivities by (2.11)-(2.15) only involve matrix calculation
of order six or four.

The necessary derivatives of the system matrix [L], we get from the definitions (5.9)-(5.13),

[L1,A = y[Sl + f3[C1 + 2A[M1

[L1,p = [Q1

[L1., = (I + Ay)[51" + A2[MJ.,

=(I + Ay)Ls"v';u'; dx + A2f m"VjUj dx

(5.16)

and for the specific case of s = m2
, the last equation is

[LJ., = JI «(I +Ay)2mv';u'; + A2vjuj)m" dx.
o

(5.17)
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. ........ "" "" .

5 : : w (p) , m' " 1 :
.......... ': '" - '." : .

w(p) ,m '" 1-0.9x

10 ............ : .

a

9 .

8 = 0 , y = 0.01

8"'1,y=0

8 '" 1 , y = 0.01

alp) , m " 1

alp) , m = 1-0.9x

(0, -5) :10 p

Fig. 8. Characteristic curves for the uiplwlz cQlumn with external and internal damping, curves to the
right for a uniform column, and curves to the left for a linearly tapered column.

For this case it follows from (2.11) that defining the gradient function g = g(x) by

(
I I «(1 +Ay)2mv'ju';+ A2ViUi)l/Ji<Pi)

g(x) = - Re j {~V(Y[S] + P[C]+ 2A[M]){<I>}

(
{'I'V[ Q]{lI>} )

Re {'I'V(y[S] + P[C] + 2A[M)){lI>}

(5.18)

we get

8Pcr = L' g8m dx, (5.19)

analogously to (4.18).

In Figs. 10-12 we show the gradient function (5.18) corresponding to the results given in
Table 3. Note the agreement of Fig. to with Fig. 2 for the very special case, which can be
solved analytically, i.e. the uniform Beck column.
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Table 3. Flutter loads and flutter frequencies obtained with four expansion functions

Q(x) .1 Q(x) ~ 1 - x Q(x)~.!..(l-x) 2

LOAD 2
(BECK column) (LEIPHOLZ colUl1U1) (HAUGEj;, column)

DAMPING
S=o S=l S=o S = 1 S=o S = 1 S=o 13=1 8=l' 13 = 1 S=o S = 1
Y = 0 y=O y = .01 Y = .01 Y = 0 y = 0 )' = .01 Y = .01 '! = 0 1'=0 Y = .0] y = .01

Uniform beam with
2

and m" 1scm

Flutter I

Iload PF
20.0 20.1 11.0 17 .8 40.1 40.~ 21.9 35.6 151.1 151.S 79.2 132.0

Flutter
10.9 11.0 5.4 7.8 111.0 I

freq,w
F

11.0 5.4 7.8 1l.5 1l.5 5.4
i

b.O

Linear tapered heam with 2 and m=l-0.9xscm

Flutter
6.3 6.2 4.1 6.0 14.1 14.1 13.8 37. SIload P

F
8.9 59.3 61.] GO.8

Flutter
l!.Sjll.3 8.6 10.5 13.3 10.7

freq , w
F

11.8 8.3 13.3 12.8 8.3 11 .3

Sensitivities with respect to load distribution
In this section we have been dealing with different specific load distributions q'" q(x). An

interesting question here concerns the sensitivity of the critical load to changes in the
distributions. The variation 5q gives rise to the increments 5Q, 5A, Jp, and from (5.1) we get

op f vQu" dx +p f voQu" dx + oA f (v{3u + v'}'(su")") dx +2AoA f vrnu dx =: 0,

(5.20)

because the stationarity makes it possible to neglect the increments 5v and 5u.
At the critical load p = Per we have Re(5A) '" 0 and A=: iWen whereby (5.20) becomes

with z defined by

(I: "~U" dX)
'" - pcfle

f voQu"dx

z
(5.21)

z '" f (({3 + i2werrn)vu + '}'v(su")") dx.

From Q =: JI q(~) d~ we have oQ =: JI oq d~, and thus we may rewrite (5.21) as
x x

oPer =: f goq dx,

where the gradient function g =: g(x) is defined by

('f vu" d~)' / L' vQu" dX)
g(x) = - pcfle Re .z z

(5.22)

(5.23)

(5.24)

Analogously, we obtain results for OWen and the case without damping again gives simplified

results.
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6 1, y ; 0

y ; 0.01

a (p) , m ~ 1

6 ; 0 y; 0.01

6;1 y;O

6 ; 1

a.

0 .

. .~ : -: -: .
w(:ol,m;1-0.9x

6 ; 1 , y ; 0
W

6 0 y ; 0.01

6 1 y ; 0.01
6 1 0, y

1Q , .: .

a(:o) ,m 1-0.9x

10. -5) :80

Fig. 9. Characteristic curves for the Hauger column with external and internal damping, curves to the right
for a uniform column, and curves to the left for a linearly tapered column.

In matrix notation the result may be given analogously to (5.18) because, corresponding to
(5.17), we have from (5.9H5.l I)

[LJ.t =Pf vu"Q,t dx. (5.25)

6. CONCLUSION

Sensitivity analysis of mechanical systems is a subject of increasing importance. Besides
being essential for solution of problems of optimal design, this analysis gives answers to many
interesting questions.

For non-conservative problems of dynamic stability many earlier papers have given confus
ing results. Hopefully, the present paper may give some clarification. The sensitivity analyses
performed in detail here illustrate the important information that can be obtained. The
sensitivity of critical values of stability with respect to vanishing damping should be mentioned
as an example demanding special analysis [24J.

Finally, we would like once more to stress the point, that a sensitivity analysis demands only
comparatively few calculations because all the necessary data are available from the ordinary
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'00

Uniform beam with
s;::m2 and m I 200

Lineorty 'tapered beam with
s,:;;m z and rn I~09x

·50

E Xi:erfloJ Qnd internat damping
fj~ I , r~O.OI

100 'IvO

100

Interno\ dompin9 onlyr = 0.01, fj ~O

No damping
{!=O.r=O

E: xternol dampIng only
13= I , r=O

100
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-200

-100

0t::::==::::::::~~·

001
.,00l---_--- --:- J '200'-O---'€"-Q-2-S---0-S-0---0-"-.---<

o 025 050 0.7S

Fig. 10. Gradient function (5.18) for the Beck column with external and internal damping. Note the different
scales for the uniform column and the linearly tapered column. Gradient function for non-structural masses
are also given separately as in Fig. 2-4. The lower, left case is identical to the case in the middle of Fig. 2.
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Linearly tapered beam with
s=m' and m=I-O.9l.

Internal damping only
r =0.01.,8 =0

External dampin9 only
P=I,)'=O

-200300

2 -'00 :

200

0
No dampinq Na dampin9

P=O,r= 0 P=O.r=O
-'00 200

'200 -'00
0 025 0.50 0.75 , 0 0.25 0.50 0.75

-,

Fig. II. Gradient function (5.18) for the Ltipholz column with external and internal damping. Note the
different scales for the uniform column and the linearly tapered column.
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0,75050o 2S

Internat damping only
y ~ 001, {1 =0

External damping only
P=I,y=O

No damping
{3=O,y=O

1:'>00

·000

sao

0

1500

'000

sao

0

-soo

"00, 00,750.5002S

Uniform beam with
s=m" and m;:; I

E ):."ternal and internal damping
{1~I,y~O.OI

I
'OOO! Linearly tapered beom with

s=m 2 ond m=I-09x:

;)l--.._~__--=~-.jc:V-~"
l

Ex ternal ond internat damping
{1=1 ,y 0.01

1000

I
;o~500

1

oL.--

f

" Internal damping only
y~OOI,{1=O

.500 \

1000! \

":I~\-------=-------

1
EXTernal damping only

P=I,y~O
ISOC \

1\
100°1 \

SO')1\ ~
0~~~~

No dompmg
{1=O,y=O

-500

Fig. 12. Gradient function (5.18) for uniform and linearly tapered Hauger column with external and internal
damping.

analysis. For non-conservative problems this data, however, must include the solution to the
adjoint problem.

The intension of the paper has been to focus on sensitivity analysis unrelated to optimal
design, but a natural extension of the present work is then to use the results in optaining
optimal designs.
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